Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 35-41, 2024.
Article in Chinese | WPRIM | ID: wpr-1005251

ABSTRACT

ObjectiveTo identify Lycium chinense and L. barbarum as the original plants of Lycii Cortex simply and efficiently by multiple allele-specific polymerase chain reaction (PCR). MethodThe chloroplast genome sequences of L. chinense and L. barbarum were downloaded from the Chloroplast Genome Information Resource (CGIR), and then IdenDSS was employed to screen out the specific single nucleotide polymorphism (SNP) sites between the two plants. Primer 5.0 was used to design the specific primers, including primers GQ-F/R for identifying L. chinense and primers NX-F/R for identifying L. barbarum. Furthermore, the primer concentration ratio, annealing temperature, cycles, and Taq enzyme were optimized to establish the optimal PCR system and conditions for plant identification. Finally, the applicability of the established method was examined with the plant samples collected from different regions. ResultThe PCR with GQ-F/R∶NX-F/R concentration ratio of 2∶1 at the annealing temperature at 59 ℃ and for 30 cycles showed specific bands at 183 bp and 295 bp, respectively, for L. chinense and L. barbarum samples from different regions. ConclusionThe established PCR approach can simply, rapidly, and efficiently identify the original plants of Lycii Cortex, serving as a new method for the discrimination between L. chinense and L. barbarum. Moreover, the method provides technical support for the research and development of classic famous prescriptions containing Lycii Cortex.

2.
Acta Pharmaceutica Sinica ; (12): 127-138, 2023.
Article in Chinese | WPRIM | ID: wpr-964293

ABSTRACT

Juvenile zebrafish were used to screen the active components of Lycii Fructus for improving osteoporosis. The screening results were further verified by zebrafish adult osteoporosis model and the action mechanism was explored. Prednisolone was used as the inducer to build osteoporosis models of juvenile and adult zebrafish, and 9 groups of samples of different extracts and chemical parts of Lycii Fructus were given. Alizarin red staining was applied for observing the scale matrix mineralization and bone resorption. The activities of osteoblasts and osteoclasts were detected using alkaline phosphatase (ALP) and tartrate resistant acid phosphatase (TRAP/TRACP) staining. The expressions of bone metabolism-related genes alp, osteoprotectin (opn), osteoblast specific transcription factor (sp7), cathepsin K (ctsk), tracp, and Runt family transcription factor 2b (runx2b) in each group were determined using quantitative polymerase chain reaction. The results showed that all components of Lycii Fructus improved the formation area of the first vertebrae, the staining light density value, and the number of vertebrae joints in juvenile zebrafish and the Lycium barbarum polysaccharide (LBP) treatment group exerted the best effect. In addition, LBP prevented the formation of bone resorption lacunae in zebrafish scales, increased ALP activity, decreased TRAP activity, up-regulated the alp, sp7, and opn genes, and lowered the expressions of ctsk and tracp genes. In conclusion, LBP regulated the activity of osteoblasts and osteoclasts, reduced bone resorption, promoted bone formation and enhanced bone density, which might be the main anti-osteoporosis active fraction of Lycii Fructus. This study provided modern scientific evidence for the scientific connotation of the traditional effect of "strengthening bones and muscles" of Lycii Fructus, provided the reference for the evaluation of the anti-osteoporosis activity of traditional Chinese medicine based on zebrafish adult model, and provided beneficial enlightenment for the bone health needs of the aging society population.

3.
China Journal of Chinese Materia Medica ; (24): 2387-2395, 2023.
Article in Chinese | WPRIM | ID: wpr-981315

ABSTRACT

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Subject(s)
Lycium/chemistry , Drugs, Chinese Herbal/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Antineoplastic Agents , Polysaccharides/chemistry
4.
Chinese Journal of Biotechnology ; (12): 3015-3036, 2023.
Article in Chinese | WPRIM | ID: wpr-981246

ABSTRACT

To explore the differentially expressed genes (DEGs) related to biosynthesis of active ingredients in wolfberry fruits of different varieties of Lycium barbarum L. and reveal the molecular mechanism of the differences of active ingredients, we utilized Illumina NovaSeq 6000 high-throughput sequencing technology to conduct transcriptome sequencing on the fruits of 'Ningqi No.1' and 'Ningqi No.7' during the green fruit stage, color turning stage and maturity stage. Subsequently, we compared the profiles of related gene expression in the fruits of the two varieties at different development stages. The results showed that a total of 811 818 178 clean reads were obtained, resulting in 121.76 Gb of valid data. There were 2 827, 2 552 and 2 311 DEGs obtained during the green fruit stage, color turning stage and maturity stage of 'Ningqi No. 1' and 'Ningqi No. 7', respectively, among which 2 153, 2 050 and 1 825 genes were annotated in six databases, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and clusters of orthologous groups of proteins (KOG). In GO database, 1 307, 865 and 624 DEGs of green fruit stage, color turning stage and maturity stage were found to be enriched in biological processes, cell components and molecular functions, respectively. In the KEGG database, the DEGs at three developmental stages were mainly concentrated in metabolic pathways, biosynthesis of secondary metabolites and plant-pathogen interaction. In KOG database, 1 775, 1 751 and 1 541 DEGs were annotated at three developmental stages, respectively. Searching the annotated genes against the PubMed database revealed 18, 26 and 24 DEGs related to the synthesis of active ingredients were mined at the green fruit stage, color turning stage and maturity stage, respectively. These genes are involved in carotenoid, flavonoid, terpenoid, alkaloid, vitamin metabolic pathways, etc. Seven DEGs were verified by RT-qPCR, which showed consistent results with transcriptome sequencing. This study provides preliminary evidences for the differences in the content of active ingredients in different Lycium barbarum L. varieties from the transcriptional level. These evidences may facilitate further exploring the key genes for active ingredients biosynthesis in Lycium barbarum L. and analyzing their expression regulation mechanism.


Subject(s)
Flavonoids/metabolism , Fruit/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Lycium/metabolism , Metabolic Networks and Pathways , Transcriptome
5.
China Journal of Chinese Materia Medica ; (24): 60-70, 2023.
Article in Chinese | WPRIM | ID: wpr-970502

ABSTRACT

In this study, five polysaccharides from Lycium barbarum(LBPs)(LBP-1-LBP-5) were selectively extracted by different extraction methods, and the chemical composition, structural characteristics, and biological activities of LBPs were explored. The results of chemical composition analysis showed that alkaloids were not detected in the five LBPs. The total polysaccharide content was(81.95%±1.6%)-(92.96%±0.76%), the uronic acid content was(8.26%±0.46%)-(24.81%±0.46%), and the protein content was(0.06%±0.03%)-(1.35%±0.13%). The monosaccharide compositions of the five LBPs were basically same, mainly including glucose, xylose, and galactose. However, there was significant difference in the content ratio of different monosaccharide. The results of infrared spectra analysis indicated that the five LBPs had typical infrared spectral characteristics of polysaccharides. The results of nuclear magnetic resonance characteristic spectrum analysis revealed that the five LBPs had two configurations of α and β. Meanwhile, there were triple helix structures in LBP-2, LBP-3, and LBP-4, which enhanced the activities of polysaccharides. The results of activities screening suggested that the biological activities of the five LBPs were significantly different. LBP-3 showed the highest lipid oxidation clearance rate, and its antioxidant activity was equivalent to that of the positive control group. The inhibitory rate of LBP-4 on α-amylase and its activation rate of alcohol dehydrogenase were better than those of other fractions, and the inhibitory rate of LBP-4 on α-amylase was slightly higher than that of the positive control group when the mass concentration was 10 g·L~(-1). LBP-2 showed stronger inhibitory activity against α-glucosidase and hyaluronidase. This study provides references for the precise development and utilization of LBPs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Lycium/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Monosaccharides
6.
Digital Chinese Medicine ; (4): 307-316, 2023.
Article in English | WPRIM | ID: wpr-997734

ABSTRACT

Objective@# To explore whether Lycium barbarum polysaccharide (LBP) can reduce the apoptosis of retinal photoreceptor cells in retinitis pigmentosa (RP) mice by inhibiting nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signaling pathway. @*Methods@# (i) In vitro experiments, mouse retinal ganglion cells (661W cells) were divided into normal, model, LBP low-dose (LBP-L, 40 mg/L), LBP middle-dose (LBP-M, 80 mg/L), LBP high-dose (LBP-H, 160 mg/L), and positive drug control (NLRP3 inhibitor, 160 mg/L) groups. And the 661W cells were exposed to varying concentrations of H2O2 ranging from 50 to 400 μmol/L to determine the optimal concentration for inducing apoptosis (200 μmol/L). Then the cell viability was assessed using Cell Counting Kit-8 (CCK-8), while the apoptosis rate was detected by flow cytometry; the expression of NLRP3 was detected by immunofluorescence; and the expression of apoptosis markers was detected by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB). (ii) In vivo assays were carried out with the use of C57/BL6 and Rd10 mice. The animal experimental groups were divided into normal, model, LBP-L, LBP-M, LBP-H, and NLRP3 inhibitor groups, in which the normal group was C57/BL6 mice and the other groups were Rd10 mice. Ten mice were included in each group, and the corresponding drugs were administered intragastrically for a duration of four weeks. NF-κB/NLRP3 pathway and the expression of apoptosis markers were observed by electroretinogram, histopathological examination, and WB to assess the effects of LBP on retinal photoreceptor cell apoptosis.@*Results@#(i) In vitro experiments, compared with the normal group, the apoptosis rate of 661W cells in model group was significantly increased (P < 0.01), and the expression levels of key proteins of NF-κB/NLRP pathway, such as NLRP3, NF-κB, p-NF-κB, and pro-apoptotic protein caspase-3, were up-regulated (P < 0.01). The rate of Bax/Bcl-2 was increased (P < 0.01), and the concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α were significantly increased (P < 0.01). Compared with the model group, high dose of LBP decreased the apoptosis rate of 661W cells (P < 0.01), and down-regulated the expression levelsof the key proteins of NF-κB/NLRP3 pathway, including NF-κB, NLRP3, p-NF-κB, and caspase-3 (P < 0.01). The rate of Bax/Bcl-2 was decreased (P < 0.01), and the concentrations of IL-1β and TNF-α were decreased (P < 0.01). (ii) In vivo experiments, high dose of LBP significantly increased morphological changes in the outer nuclear layer (ONL) thickness of Rd10 mice, as well as functional changes in the amplitudes of the a-wave and b-wave (P < 0.01), which also down-regulated the expression levels of NF-κB (P < 0.05), NLRP3, p-NF-κB, and caspase-3 (P < 0.01), reduced the Bax/Bcl-2 rate (P < 0.01), and decreased the concentrations of IL-1β (P < 0.01) and TNF-α (P < 0.05). @*Conclusion@#LBP could improve both retinal morphology and function, providing protection to photoreceptors from apoptosis through the inhibition of the NF-κB/NLRP3 pathway.

7.
Chinese Journal of Pharmacology and Toxicology ; (6): 496-497, 2023.
Article in Chinese | WPRIM | ID: wpr-992179

ABSTRACT

Alzheimer's disease(AD)is a neurode-generative disease with insidious onset and progressive development.In recent years,the prevalence of AD has shown a linear upward trend.At present,its pathogene-sis is not clear.Lycium barbarum polysaccharide(LBP)is one of the main effective components extracted from the dried ripe fruit of Lycium barbarum L.,a solanaceae plant.It has many pharmacological effects such as anti-aging,anti-oxidation,anti-fibrosis,anti-inflammation,neu-roprotection and immunomodulation.LBP has been widely studied in the field of prevention and treatment of AD because of its good anti-aging and neuroprotective effects.Its prevention and treatment mechanism mainly includes the following points:① Regulating the apoptosis of nerve cells.Studies have shown that the signal pathway com-posed of phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)participates in a series of processes such as the growth,proliferation and apoptosis of neurons and plays an important regulatory role.LBP can reduce the number of cell apoptosis,increase the expression levels of autophagy protein Beclin1 and microtubule-associated protein 1 light chain 3Ⅱ(LC3Ⅱ),and decrease the expres-sion levels of p-Akt and phosphorylated mammalian target protein of rapamycin(p-mTOR),which indicates that Lycium barbarum polysaccharide can prevent and treat AD by inhibiting PI3K/Akt/mTOR pathway and improv-ing the autophagy level of cells.②Inhibition of amyloid β-protein(Aβ)production.Aβ is the main component of senile plaque,which is regarded as the main biomarker of AD.It is found that the neurotoxicity of Aβ plays a role by increas-ing the influx of Ca2+ mediated by N-methyl-D-aspartate receptor in the process of signal transduction in the brain,and then generating reactive oxygen species(ROS)and apoptosis signals.LBP can promote autophagy of HT22 cells by inhibiting PI3K/Akt pathway,which has a protec-tive effect on Aβ-induced toxicity.③ Inhibit the produc-tion of inflammatory cytokines.In the pathogenesis of AD,microglia are activated when they feel pathological accumulation of Aβ,and then cell surface immune and adhesion molecules such as cluster of differentiation 45(CD45),CD40,CD36 and integrins are activated,thereby recruiting Src family kinases and activating MAPK path-way,leading to over-expression of proinflammatory fac-tors.A large number of cytokines and chemokines are produced,which may lead to synapse damage and loss.For example tumor necrosis factor-α(TNF-α)can induce neuronal apoptosis and injury.The production of interleu-kin,and other cytokines and chemokines may also lead to microglia activation,astrocyte proliferation,and further secretion of proinflammatory factors and amyloid deposi-tion,thus making the neuroinflammatory cascade perma-nent.LBP can down-regulate the expression of TNF-α and IL-1β genes,reduce the level of intracellular ROS,and improve the learning and memory ability of AD patients.In this paper,the mechanism of Lycium barbarum polysaccharide in preventing and treating AD is reviewed,in order to provide basis for drug development and clini-cal application.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 106-112, 2023.
Article in Chinese | WPRIM | ID: wpr-972291

ABSTRACT

ObjectiveTo investigate the mechanism of Lycium barbarum polysaccharides (LBP) in promoting the activation of RAW264.7 macrophages. MethodRAW264.7 macrophages were stimulated with LBP at different concentrations (50, 100, 200 mg·L-1), and those stimulated with lipopolysaccharide (LPS) at 100 μg·L-1 and galactose (Gal) at 100 mg·L-1 as positive controls. After 24 h of LBP stimulation, the cell counting kit-8 (CCK-8) was used to detect the survival rate of RAW264.7 macrophages treated with LBP (0, 50, 100, 200, 400, 800 mg·L-1). The levels of interleukin-6 (IL-6) and interleukin-12 (IL-12) in cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). The protein and mRNA expression of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) in Toll-like receptor 4 (TLR4)/Toll-like receptor 2 (TLR2)/macrophage galactose-type lectin (MGL) pathway of RAW264.7 macrophages was detected by Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultCCK-8 results showed that compared with the results in the blank group, the survival rate of RAW264.7 macrophages decreased in the 400, 800 mg·L-1 LBP groups (P<0.05). ELISA results showed that compared with the blank group, 50 mg·L-1 LBP could promote the secretion of IL-12 in RAW264.7 macrophages (P<0.01). Compared with the blank group, 100 mg·L-1 LBP and 200 mg·L-1 LBP could promote the secretion of IL-6 in RAW264.7 macrophages (P<0.05, P<0.01). Western blot results showed that compared with the blank group, the LBP groups (50, 100, 200 mg·L-1) enhanced protein expression levels of MAPK key molecules (p-p38 MAPK, p-ERK, p-NF-κB, and p-JNK) in TLR4, TLR2, and MGL pathways (P<0.05, P<0.01). Compared with the model group, the 200 mg·L-1 LBP group could promote the expression level of p-NF-κB protein in RAW264.7 macrophages (P<0.01). Real-time PCR results showed that compared with the blank group, the LBP groups (50, 100, and 200 mg·L-1) enhanced the mRNA expression levels of MAPK key molecules (p38 MAPK, ERK, NF-κB, and JNK) in TLR4 and TLR2 pathways (P<0.05, P<0.01). Compared with the model group, the 50 and 200 mg·L-1 LBP groups could promote the mRNA expression levels of JNK and ERK2 in RAW264.7 macrophages (P<0.05, P<0.01). ConclusionLBP can regulate the activation of RAW264.7 macrophages and participate in the immune response through the TLR2/TLR4/MGL pathway.

9.
Journal of Zhejiang University. Science. B ; (12): 157-171, 2023.
Article in English | WPRIM | ID: wpr-971477

ABSTRACT

The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.


Subject(s)
Animals , Dogs , Antioxidants/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Metabolic Networks and Pathways , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polysaccharides/pharmacology , Lycium/chemistry
10.
China Pharmacy ; (12): 957-961, 2022.
Article in Chinese | WPRIM | ID: wpr-923598

ABSTRACT

OBJECTIVE To establish a method for simultaneous determination of zeaxanthin ,β-carotene,β-cryptoxanthin palmitate and zeaxanthin dipalmitate in Lycium barbarum . METHODS L. barbarum was extracted with n-hexane-anhydrous ethanol-acetone-toluene(10∶6∶7∶7,V/V/V/V)by ultrasonic method. High performance liquid chromatography (HPLC)method was adopted. The determination was performed on YMC C 30 column with mobile phase A consisted of methanol-acetonitrile-water (81∶ 14 ∶ 5,V/V/V)and mobile phase B consisted of dichloromethane (gradient elution )at the flow rate of 1.0 mL/min. The column temperature was set at 20 ℃. The detection wavelength was set at 450 nm,and sample size was 20 μL. Using zeaxanthin as control,the relative correction factors (RCFs)of β-carotene,β-cryptoxanthin palmitate and zeaxanthin dipalmitate were calculated , and then the content of each component was calculated according to RCFs and compared with the results of external standard method(ESM). RESULTS The linear range of zeaxanthin ,β-carotene,β-cryptoxanthin palmitate and zeaxanthin dipalmitate were 0.119 4-2.983 8,0.121 7-1.521 6,0.285 9-5.718 8,8.460 5-211.513 3 μg/mL(all R2>0.999). RSDs of precision ,repeatability and stability(16 h)tests were all less than 4%. The average recoveries were 103.34%,107.37%,105.64%,96.16%(RSD<5%,n= 9). The average RCFs of β-carotene,β-cryptoxanthin palmitate and zeaxanthin dipalmitate were 1.109,1.390,1.158. The relative errors of the content determination results by quantitative analysis of multi-components by singer marker (QAMS)and ESM were within ±1%. CONCLUSIONS The established HPLC-QAMS method is accurate and stable ,which can be used for the content determination and quality control of 4 carotenoids in L. barbarum .

11.
Journal of Zhejiang University. Science. B ; (12): 286-299, 2022.
Article in English | WPRIM | ID: wpr-929059

ABSTRACT

Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.


Subject(s)
Female , Humans , Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Ferroptosis , Glutathione/metabolism , Iron/metabolism
12.
China Journal of Chinese Materia Medica ; (24): 392-402, 2022.
Article in Chinese | WPRIM | ID: wpr-927981

ABSTRACT

Obvious epigenetic differentiation occurred on Lycium barbarum in different cultivation areas in China. To investigate the difference and change rule of DNA methylation level and pattern of L. barbarum from different cultivation areas in China, the present study employed fluorescence-assisted methylation-sensitive amplified polymorphism(MSAP) to analyze the methylation level and polymorphism of 53 genomic DNA samples from Yinchuan Plain in Ningxia, Bayannur city in Inner Mongolia, Jingyuan county and Yumen city in Gansu, Delingha city in Qinghai, and Jinghe county in Xinjiang. The MSAP technical system suitable for the methylation analysis of L. barbarum genomic DNA was established and ten pairs of selective primers were selected. Among amplified 5'-CCGG-3' methylated sites, there were 35.85% full-methylated sites and 39.88% hemi-methylated sites, showing a high degree of epigenetic differentiation. Stoichiometric analysis showed that the ecological environment was the main factor affecting the epigenetic characteristics of L. barbarum, followed by cultivated varieties. Precipitation, air temperature, and soil pH were the main ecological factors affecting DNA methylation in different areas. This study provided a theoretical basis for the analysis of the epigenetic mechanism of L. barbarum to adapt to the diffe-rent ecological environments and research ideas for the introduction, cultivation, and germplasm traceability of L. barbarum.


Subject(s)
China , DNA Methylation , DNA Primers , Epigenesis, Genetic , Lycium/genetics
13.
China Pharmacy ; (12): 575-578, 2022.
Article in Chinese | WPRIM | ID: wpr-920727

ABSTRACT

OBJECTI VE To establish the high performan ce liquid c hromatography(HPLC)fingerprint of carotenoid in Lycium barbarum,and to investigate the spectrum-effect relationship between its common peak and antioxidant activity. METHODS HPLC method was adopted. The fingerprints of carotenoid in 34 batches of L. barbarum from different producing areas were established by Similarity Evaluation System of TCM Fingerprint (2012 edition),and similarity evaluation and common peak identification were carried out. Taking scavenging rate of DPPH free radical as index ,in vitro antioxidant activity of carotenoid in L. barbarum was investigated. The spectrum-effect relationship between the common peaks of carotenoids in L. barbarum and antioxidant activity was analyzed by grey correlation method. RESULTS There were 4 common peaks in the fingerprints of carotenoids in 34 batches of L. barbarum ,and the similarity was not less than 0.903. Peak 1 was identified as zeaxanthin ,and peak 4 as zeaxanthin dipalmitate. The scavenging rates of them to DPPH free radical were 1.792%-3.160%. The common peaks of carotenoids in L. barbarum were positively correlated with scavenging rate of DPPH free radical ,and the correlation degree was greater than 0.6;the correlation degree of peak 2 and peak 4(zeaxanthin dipalmitate )with scavenging rate of DPPH free radical was greater than 0.8. According to the correlation degree ,the contribution of each common peak to scavenging rate of DPPH free radical was determined as peak 2> peak 4(zeaxanthin dipalmitate )>peak 1(zeaxanthin)>peak 3. CONCLUSIONS In this study ,HPLC fingerprint of carotenoid in L. barbarum is successfully established ,and two common peaks are identified. The chemical components represented by peak 2 and zeaxanthin palmitate may be the material basis of antioxidant activity of carotenoid in L. barbarum .

14.
Electron. j. biotechnol ; 50: 53-58, Mar. 2021. graf, tab, ilus
Article in English | LILACS | ID: biblio-1292393

ABSTRACT

BACKGROUND: Lycium barbarum (also called wolfberry), a famous Chinese traditional medicine and food ingredient, is well recognized for its significant role in preventing obesity; however, the molecular mechanisms underlying its preventive effects on fat accumulation are not well understood yet. The aim of this study was to determine the effects and mechanism of Lycium barbarum polysaccharides (LBP) on the proliferation and differentiation of 3T3-L1 preadipocytes. MTT was used to detect the proliferation of 3T3-Ll preadipocytes. Oil red O staining and colorimetric analysis were used to detect cytosolic lipid accumulation during 3T3-L1 preadipocyte differentiation. Real-time fluorescent quantitative PCR (qPCR) technology was used to detect peroxisome proliferator-activated receptor c (PPARc), CCAAT/enhancer-binding protein a (C/EBPa), adipocyte fatty-acid-binding protein (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL) expression. RESULTS: The concentration of LBP from 25 to 200 lg/mL showed a tendency to inhibit the growth of preadipocytes at 24 h, and it inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. In the preadipocytes treated with 200 lg/mL LBP, there were reduced lipid droplets in the cytoplasm, and its effect was opposite to that of rosiglitazone (ROS), which significantly reduced the PPARc, C/EBPa, aP2, FAS, and LPL mRNA expression of adipocytes. CONCLUSIONS: LBP exerts inhibitive effects on the proliferation and differentiation of 3T3-L1 preadipocytes and decreases the cytoplasm accumulation of lipid droplets during induced differentiation of preadipocytes toward mature cells. Above phenomenon might link to lowered expression of PPARc, C/EBPa, aP2, FAS, and LPL after LBP treatment. Thus, LBP could serve as a potential plant extract to treat human obesity or improve farm animal carcass quality via adjusting lipid metabolism.


Subject(s)
Polysaccharides , Plant Extracts , Adipocytes , Lycium/chemistry , Cell Differentiation , 3T3-L1 Cells , Cell Proliferation , Adipogenesis , Real-Time Polymerase Chain Reaction/methods
15.
Journal of Environmental and Occupational Medicine ; (12): 1270-1277, 2021.
Article in Chinese | WPRIM | ID: wpr-960730

ABSTRACT

Background 2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used as a broad-leaved herbicide and plant growth regulator. Related studies have shown that 2,4-D has neurotoxicity, ability to disrupt endocrine function, genotoxicity, carcinogenicity, and reproductive toxicity. Objective This experiment is conducted to investigate the effect of 2,4-D exposure on reproductive system of female rats, and to preliminarily explore the potential ameliorative effect of Lycium barbarum polysaccharide (LBP) and its possible mechanism. Methods Twenty-four SPF female SD rats with six rats in each group were randomly divided into a blank control group (deionized water 1 mL·d−1), an exposure group (75 mg·kg−1 2,4-D), an LBP control group (50 mg·kg−1 LBP), and an LBP intervention group (75 mg·kg−1 2,4-D + 50 mg·kg−1 LBP). The rats were given intragastric administration once a day for 28 consecutive days. Body weight was measured every two days. After exposure, ovary and uterus were weighed and organ coefficients were calculated; the pathological changes of ovary and uterus were detected by hematoxylin-eosin staining (HE); the level of estradiol (E2) in serum was detected by ELISA; the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in serum were measured by corresponding kits; the apoptosis of ovarian and uterine cells was detected by TUNEL fluorescence staining; and the protein expression levels of Fas, FasL, FADD, Pro-Caspase-8, Cleaved-Caspase-8, Pro-Caspase-3, and Cleaved-Caspase-3 in ovarian tissues were detected by Western blotting. Results Compared with the blank control group, the ovarian structure of the exposure group was abnormal, the number of follicles at different developmental stages decreased, morphological changes were observed, and the number of atretic follicles increased; the endometrium was incomplete, with different degrees of nuclear pseudostratification and decreased number of glands in lamina propria. Compared with the exposure group, the ovarian structure of the LBP intervention group was complete, and the follicles at different developmental stages increased in amount, remained intact, and were arranged closely; the uterine structure was relatively intact, showing decreased endometrial loss and nuclear pseudostratification. There were significant differences in the levels of SOD, GSH-Px, E2, and MDA among the four groups (F=86.1, 26.2, 43.3, and 22.3, all P<0.01). Compared with the blank control group, the levels of serum SOD, GSH-Px, and E2 decreased in the exposure group (P<0.01), while the concentration of MDA increased (P<0.01). Compared with the exposure group, the levels of serum SOD, GSH-Px, and E2 in the LBP intervention group increased (P<0.01), and the concentration of MDA decreased (P<0.01). There were significant differences in the apoptosis rates of ovarian and uterine cells among the four groups (F=64.8, 55.5, both P<0.01). Compared with the blank control group, the apoptosis rates of ovarian and uterine cells increased in the exposure group (P<0.01). Compared with the exposure group, the apoptosis rates of ovarian and uterine cells decreased in the LBP intervention group (P<0.01). There were significant differences in the expression levels of death receptor pathway-related proteins in ovarian tissues among the four groups (all P<0.05). Compared with the blank control group, the expression levels of Fas, FasL, FADD, Pro-Caspase-8, Cleaved-Caspase-8, Pro-caspase-3, and Cleaved-Caspase-3 were increased in the exposure group (P<0.05 or 0.01). Compared with the exposure group, the expression levels of above proteins were decreased in the LBP intervention group (P<0.05 or 0.01). Conclusion The study findings reveal that 2,4-D can induce oxidative stress and further mediate Fas-FasL pathway to induce apoptosis, resulting in reproductive system damage in female rats. LBP can reduce the oxidative stress level, down-regulate the expression of Fas-FasL pathway-related proteins, and reduce the apoptosis of germ cells, therefore protecting reproductive system of female rats.

16.
China Journal of Chinese Materia Medica ; (24): 3066-3075, 2021.
Article in Chinese | WPRIM | ID: wpr-888045

ABSTRACT

Lycii Cortex, the dry root bark of Lycium barbarum(Solanaceae), is rich in chemical compositions with unique structures, such as organic acids, lipids, alkaloids, cyclopeptides and other components, and plays an important role in traditional Chinese medicine. It has the effect of cooling blood and removing steam, clearing lung and reducing fire. It is mainly used in the treatment of hot flashes due to Yin deficiency, hectic fever with night sweat, cough, hemoptysis and internal heat and diabetes. Modern pharmacological studies have shown that the crude extract or monomer of Lycii Cortex has a variety of pharmacological activities, such as hypoglycemic, hypotensive, hypolipidemic, antibacterial, and antiviral effects. In this paper, the chemical constituents and pharmacological effects of Cortex Lycii were reviewed in order to further clarify its effective substances, promote the development of medical undertakings, and ensure the "Healthy China" plan.


Subject(s)
China , Hypoglycemic Agents , Lycium , Medicine, Chinese Traditional , Plant Bark
17.
Journal of Clinical Hepatology ; (12): 1348-1353, 2021.
Article in Chinese | WPRIM | ID: wpr-877326

ABSTRACT

ObjectiveTo investigate the protective effect of Lycium barbarum polysaccharide (LBP) combined with aerobic exercise (AE) on the liver of rats with nonalcoholic steatohepatitis (NASH) induced by high-fat diet based on the p38 mitogen-activated protein kinase (p38 MAPK)-nuclear factor-κB (NF-κB) pathway. MethodsAfter 1 week of adaptive feeding, 45 Sprague-Dawley rats, aged 8 weeks, were randomly divided into control group (10 rats fed with normal diet) and high-fat group (35 rats fed with high-fat diet). At the end of week 28, the high-fat group was randomly divided into model group, LBP group, AE group, and LBP+AE group, with 8 rats in each group, and intervention was performed for 10 weeks. At the end of the experiment, fasting blood glucose was measure for all rats, and serum samples, liver tissue, and visceral fat were collected. Biochemical kits were used to measure the serum levels of triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST); ELISA kits were used to measure the serum levels of fasting insulin (FINS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1); quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of Toll-like receptor 4 (TLR4), p38 MAPK, and NF-κB in liver tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the control group, the model group had significant increases in TG, TC, AST, ALT, FINS, and homeostasis model assessment of insulin resistance (HOMA-IR) (all P <0.05), a tendency of increases in the serum levels of the inflammatory factors MCP-1, TNF-α, and IL-6 (all P <0.05), and significant increases in the mRNA and protein expression levels of TLR4, p38 MAPK, and NF-κB in liver tissue (all P <0.05). Compared with the model group, each intervention group had significant reductions in TG, TC, AST, ALT, FINS, and HOMA-IR (all P <0.05), a tendency of reductions in the serum levels of the inflammatory factors MCP-1, TNF-α, and IL-6 (all P <0.05), and significant reductions in the mRNA and protein expression levels of TLR4, p38 MAPK, and NF-κB (all P <0.05). Compared with LBP group, the LBP+AE group had significant reductions in TG, ALT, FINS, HOMA-IR, MCP-1, the mRNA expression level of TLR4, protein expression levels of p38 MAPK and NF-κB(all P<0.05). Compared with Ae group, the LBP+AE group had significant reductions in FINS, HOMA-IR, IL-6, MCP-1, the mRNA expression level of TLR4 (all P<0.05). ConclusionLBP combined with AE may improve inflammation in NASH rats by regulating the p38 MAPK/NF-κB pathway.

18.
International Eye Science ; (12): 411-416, 2021.
Article in Chinese | WPRIM | ID: wpr-873434

ABSTRACT

@#AIM: To explore the effect of lycium barbarum polysaccharides(LBP)on inflammatory response of human retinal pigment epithelial cells(ARPE-19)induced by lipopolysaccharide(LPS)and its possible signal pathway.<p>METHODS: ARPE-19 cells were stimulated by LPS <i>in vitro</i> to construct the inflammatory injury cell model. Primarily, the cells were divided into five groups randomly. The blank group was cultured in complete medium, and the LPS group was stimulated with complete medium containing 10μg/mL LPS for 24h. The low, medium and high concentration LBP groups were incubated with complete medium importing 0.1, 0.5 and 1mg/mL LBP for 24h separately, and then stimulated with complete medium containing 10μg/mL LPS for 24h. We used the CCK-8 method to observe the cell survival rate, real-time fluorescent quantitative PCR to detect the mRNA expression of inflammatory factors and Western blot to test the changes of phosphorylated protein within the signaling pathway of NF-κB/MAPK.<p>RESULTS: Compared with normal cells, the survival rate of ARPE-19 cells was decreased after the LPS stimulation. With the increase of exogenous LBP concentration, the survival rate of ARPE-19 cell was gradually increased, while the inflammatory factors expression of cytokines IL-1β, IL-6 and MCP-1 were reduced accompany with the phosphorylated proteins(p-p65, P-IκBα, p-JNK, p-ERK and p-p38)of NF-κB/MAPK signaling pathway were decreased.<p>CONCLUSION: LBP prevents LPS-induced inflammatory response of ARPE-19 by inhibiting the intracellular inflammatory factors and the phosphorylation of the related protein within NF-κB/MAPK signaling pathway.

19.
China Journal of Chinese Materia Medica ; (24): 2084-2093, 2021.
Article in Chinese | WPRIM | ID: wpr-879134

ABSTRACT

This study is to clarify the composition and content differences of water-soluble nutrients in Lycium barbarum leaves(LBLs) from different areas. The total polysaccharides, free monosaccharides and oligosaccharides, nucleosides and amino acids in 35 batches of LBLs were analyzed with use of spectrophotometry, HPLC-ELSD and UPLC-MS/MS. The results showed that LBLs contained abundant polysaccharides, fructose, glucose, sucrose and maltose, with an average contents of 39.07, 12.69, 8.99, 17.44, 8.32 mg·g~(-1), respectively. Besides, eight nucleosides and twelve amino acids were detected in LBLs, and their average total contents were 54.95, 336.9 μg·g~(-1). Principal component analysis(PCA) and partial least squares discrimination analysis(PLS-DA) of carbohydrate, nucleoside and amino acid showed that the water-soluble nutrients of the samples from Qinghai Province were significantly different from those from other areas mainly in asparagine, proline, glutamine, sucrose, adenine and guanosine. In this study, the compositions and contents of water-soluble nutrients in LBLs were preliminarily clarified, which provided basis for further development and utilization of LBLs resoures.


Subject(s)
Chromatography, Liquid , Lycium , Nutrients , Plant Leaves , Tandem Mass Spectrometry , Water
20.
Journal of Preventive Medicine ; (12): 1003-1008, 2021.
Article in Chinese | WPRIM | ID: wpr-905041

ABSTRACT

Objective@#To study the effects of Lycium barbarum polysaccharides ( LBP ) on blood indexes and liver tissue morphology in rats with intrahepatic cholestasis.@*Methods@#Sprague-Dawley rats were randomly divided into the control group, the model group, and LBP low, medium and high dose group. The rats in the model group and LBP dose groups were given 60 mg/kg alpha-naphthylisothiocyanate ( ANIT ) by gavage every three days of the experiment, and the rats in the control group were given salad oil instead of ANIT. From the third day, the rats in each dose group were given 40, 150 and 600 mg/kg LBP, and the rats in the model group were given distilled water. After four weeks, the blood and urine indexes were measured, and the morphological changes of liver tissue were observed. @*Results@#From the third day of the experiment, the activity of rats in the model group and LBP dose groups decreased, and the color of urine changed to dark yellow. There was no abnormality in the group. In the model group, the levels of serum total bilirubin, direct bilirubin, total bile acid ( TBA ), alkaline phosphatase ( ALP ), γ-glutamyltransferase(γ-GGT), cholesterol, alanine aminotransferase ( ALT ), aspartate aminotransferase ( AST ), white blood cell ( WBC ), percentage of granulocyte, urinary bilirubin, urinary bile acid, liver mass and liver to body ratio were higher than those in the control group, while red blood cell and percentage of lymphocyte were lower than those in the control group ( all P<0.05 ). Pathological changes of liver tissue were observed. The levels of serum TBA, ALP, γ-GGT, ALT, AST, WBC and liver to body ratio in LBP high dose group were lower than those in the model group ( all P<0.05 ). The infiltration of inflammatory cells, proliferation and expansion of bile duct, degeneration and necrosis of liver cells were alleviated. @*Conclusions@#LBP can improve the blood indexes and pathological changes of liver tissue in rats with intrahepatic cholestasis at the dosage of 600 mg/kg. Inhibition of inflammatory response and reduction of oxidative stress injury may be the mechanism for alleviating cholestatic liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL